Le blog de Fabrice ARNAUD

CRPE – Épreuve de mathématiques

Pour dire merci….

Avant de commencer, mes quatre conseils lecture…

CRPE – Épreuve de mathématiques


Présentation générale de l’épreuve de mathématiques du CRPE
Quelques conseils pour l’épreuve de mathématiques du CRPE
Annales corrigées de la partie mathématiques des épreuves écrites


Nouveau : mise en ligne de la correction détaillée du sujet du CRPE 2023 — Mathématiques Groupe 1 et du sujet CRPE 2023 — Mathématiques Groupe 2

Présentation générale de l’épreuve de mathématiques du CRPE

L’épreuve de mathématiques du CRPE (Concours de Recrutement de Professeur des Écoles) est habituellement corrigé par des binômes constitués d’un professeur de mathématiques du secondaire (souvent de collège) et d’un conseiller pédagogique du primaire. En consultant les programmes officiels du concours depuis la session 2022, sur le site devenirsenseignant.gouv.fr, on lit que le programme pour l’épreuve écrite de mathématiques comprend :

Le programme officiel ajoute : « Les notions traitées dans ces programmes doivent pouvoir être abordées avec le recul nécessaire à l’enseignement des mathématiques aux cycles 1, 2 et 3. » Voici les liens vers ces programmes :

La page de ce blog dédiée aux ressources officielles pour enseigner les mathématiques au collège peut aussi être utile en termes de connaissances et de compétences.

Les épreuves de CRPE sont intéressantes pour un professeur de mathématiques au collège chargé de préparer ses élèves au brevet. Les exercices sont d’un très bon niveau et permettent aux meilleurs candidats au brevet de se préparer avec des exercices originaux. C’est la motivation première de cette page qui vise à rendre disponibles les sujets de mathématiques du CRPE avec ma correction détaillée.

Réciproquement, un candidat au CRPE aura intérêt à reprendre certaines épreuves de mathématiques du brevet des collèges pour se préparer. La consultation de mes annales corrigées des sujets de mathématiques du brevet sera très utile.

Quelques conseils pour l’épreuve de mathématiques du CRPE

On attend d’un candidat qu’il soit capable de résoudre et de rédiger un problème de mathématiques en montrant un certain recul par rapport aux notions abordées. Voici, dans le désordre, quelques points de vigilance :

  • L’orthographe, la grammaire, la syntaxe
    C’est la partie visible de l’iceberg ! Ce sont des copies de concours. Un candidat qui ne veille pas à cet aspect montre un manque évident de motivation et de sérieux pour la mission qu’il se propose d’exercer. Je ne suis pas d’une grande rigueur sur l’orthographe, de nombreux commentaires sur ce blog le confirment. Il faut cependant avouer qu’il est facile pour un correcteur de repérer les lacunes orthographiques et grammaticales des candidats (on est souvent beaucoup plus critique avec les autres qu’avec soi-même !).
  • La rédaction
    Nicolas Boileau et c’est tout : « Ce qui se conçoit bien s’énonce clairement, et les mots pour le dire arrivent aisément« . Inutile d’essayer de noyer le poisson dans une épreuve de mathématiques : le correcteur sait nager ! Quand un raisonnement devient alambiqué ou qu’un candidat commence à cacher dans cinq lignes de textes ce qu’il n’a pas compris, la sanction est irrévocable !
  • Les unités de mesure et les grandeurs
    Contrairement à ce que certains croient, il est tout à fait autorisé et même recommandé d’utiliser des unités de mesure dans les calculs. La stratégie qui consiste à calculer avec des nombres sans unités puis à faire une phrase réponse avec les unités adaptées, bien que tout à fait acceptable, est à proscrire ! Tous les sujets de CRPE abordent des grandeurs : longueur, aire, volume, vitesse, masse volumique… Quand on est dans ce cadre, l’usage des unités de mesure dans les calculs permet de guider le raisonnement et empêche les calculs absurdes.
    Un candidat qui ose : Périmètre = 2 x 5 cm + 2 x 7 dm =2 x 5 cm + 2 x 70 cm=10 cm + 140 cm = 150 cm = 15 dm = 1,5 m valorise ses compétences et montrent sa compréhension des grandeurs mises en jeu. Bonus en perspective !
    On peut écrire : Aire = 6 cm x 8 dam = 6 cm x 8000 cm ou encore Vitesse = 5 hm / 1 min 12 s = 500 m / 72
    En ce qui me concerne, et certains n’approuveront pas ce que je vais dire, dans un tableau de proportionnalité, je fais référence en première colonne aux grandeurs proportionnelles, sans indiquer la mesure. Je n’écris pas « Distance en km » mais « Distance ». Cela me permet, dans le tableau, d’écrire 5 km = 5000 m ou encore 1h=60 min = 3600 s en fonction des besoins !
    Lire à ce sujet :
    Faut-il mettre des unités dans les caluls ? — APMEP n°436
  • Les modèles utilisés
    Attention à la rédaction des grands classiques :  
    • Pythagore 
      Pour la version directe, il faut indiquer le nom du triangle rectangle.
      Dans la version réciproque ou contraposée, il faut veiller à la rédaction !
    • Thalès
      Même remarque, attention au protocole de rédaction des versions directes, contraposée ou réciproque. Pour la réciproque, l’ordre des points est une hypothèse importante !
    • Trigonométrie
      Pas de trigonométrie, d’hypoténuse, de côté adjacent ou opposé, sans triangle rectangle. Celui-ci doit exister et être précisé en préalable.
    • Probabilités
      Pour le CRPE c’est le modèle uniforme à une ou deux épreuves qui est utilisé. Il est essentiel de le mentionner. Si le dé n’est pas truqué, il y a bien équiprobabilité des issues. Une phrase du type, « c’est une expérience aléatoire à une (ou deux épreuves) pour laquelle il y a n issues équiprobables » est appréciée.
  • La connaissance des nombres
    À l’école primaire, les élèves rencontrent les nombres entiers, les nombres décimaux et les nombres rationnels. Il faut avoir les idées claires à ce sujet ! Cette notion est testée dans tous les sujets et le moindre doute sur cette question est éliminatoire !
    Un nombre entier permet de dénombrer des groupes d’objets. Un nombre décimal permet de mesurer. Tout nombre entier est un nombre décimal. Un nombre rationnel est une fraction dont le numérateur et le dénominateur sont des nombres entiers relatifs (non nul pour le dénominateur). Un quotient permet d’écrire sous forme de fraction une division dont le dividende et le diviseur sont décimaux. Un nombre décimal est un nombre rationnel dont le dénominateur est une puissance de 10. 5 est un nombre entier, un nombre décimal, car 5=5/10^0 et un nombre rationnel puisque 5=5/1. 0 est un nombre comme les autres : entier, décimal et rationnel. Un pourcentage est une fraction dont le dénominateur est 100. On peut l’écrire sous forme d’un nombre décimal (éventuellement arrondi).
    Bref, il faut se préparer à cela et renforcer ses compétences dans ce domaine. Quelques lectures indispensables pour vous aider :  

Ci-dessous, les corrections que je propose essayent de suivre les conseils ci-dessus. Dans la mesure du possible, je propose plusieurs réponses possibles avec des commentaires pour vous aider à améliorer la qualité de votre rédaction et le recul nécessaire pour certains exercices.

Quelques ressources pour vous aider à vous préparer :

Annales corrigées de la partie mathématiques de l’épreuve écrite

  • SESSION 2023
    • Sujet de mathématiques corrigé — Groupe 1 (Métropole et Réunion) — Corrigé
      • Exercice 1 : La randonnée à vélo
        Réciproque du théorème de Pythagore — Pythagore direct — Vitesse
      • Exercice 2 : Le partage
        Fractions
      • Exercice 3 : Des triangles avec Scratch
        Algorithmique — Hexagone
      • Exercice 4 : Les fraises
        Plan à l’échelle — Aire du rectangle, du triangle rectangle, du disque — Proportionnalité
      • Exercice 5 : La frise historique
        Périmètre — Volume
      • Exercice 6 : Les musiciens à l’école
        Probabilités
    • Sujet de mathématiques — Groupe 2 (Martinique, Guadeloupe, Guyane) — Corrigé
      • Exercice 1 : La course solidaire d’action contre la faim
        Pythagore — Échelle
      • Exercice 2 : Le rectangle
        Quadrilatère et rectangle
      • Exercice 3 : Deux programmes de calculs
        Tableur — Équation du premier degré — Programme de calcul
      • Exercice 4 : Touché coulé
        Probabilités
      • Exercice 5 : La température
        Expression littérale — Équation du premier degré
      • Exercice 6 : Doigts et orteils
        Calcul littéral
    • Sujet de mathématiques — Groupe 3 (Polynésie) — Corrigé
      • Exercice 1 : Cinq exercices indépendants
        Arithmétique — Tableur
      • Exercice 2 : Le cross de l’école
        Thalès — Pythagore — Lecture graphique — Vitesse
      • Exercice 3 : Des polygones avec Scratch
        Scratch — Quadrilatères — Programme de construction
      • Exercice 4 : Lancers de dés en grande section
        Probabilités
      • Exercice 5 : Dix affirmations
        Nombres décimaux — Nombres rationnels — Pourcentages — Équations — Pythagore
  • SESSION 2022
  • SUJET 0

Pour les sujets dans les autres matières ou les sujets d’avant la réforme de 2022, il faut consulter le site officiel.


Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur comment les données de vos commentaires sont utilisées.

Pour dire merci….

Sur ce blog, on accepte les BAT !

Mes calculatrices préférées au collège et au lycée …

Casio Collège
Texas Collège
Numwork
Texax TI 83
Casio Fx 90

Mes casse-tête mathématiques

Le cube GAN magnétique
Le Rubik’Cube Phantom
Lot de cubes Qiyi
Huzzle Casse-tête
Huzzle Casse-tête

Merci pour votre visite !